

74F382
Arithmetic Logic Unit

FEATURES

- Performs six arithmetic and logic functions
- Selectable Low (clear) and High (preset) functions
- Low-input loading minimizes drive requirements
- Carry output for ripple expansion
- Overflow output for Two's Complement arithmetic

DESCRIPTION

The 74F382 performs three arithmetic and three logic operations on two 4 -bit words, A and B. Two additional Select (S0-S2) input codes force the Function outputs Low or High. An overflow output is provided for convenience in Two's Complement arithmetic.

A carry output is provided for ripple expansion. For high-speed expansion using a carry look-ahead generator, refer to the 74F381 data sheet.

Signals applied to the Select inputs, S0-S2, determine the mode of operation, as indicated in the Function Select Table. An extensive listing of input and output levels is shown in the Function Table. The circuit performs the arithmetic functions for either active-Hlgh or active-Low operands, with output levels in the same convention. In the subtract operating modes, it is necessary to force a carry (High for active-HIgh operands, Low for active-Low operands) into the Cn input of the least significant package. Ripple expansion is illustrated in Figure 1. The overflow output OVR is the Exclusive-OR of $\mathrm{Cn}+3$ and $\mathrm{Cn}+4$; a High signal on OVR indicates overflow in Two's complement operation (See Table 2 for Two's complement arithmetic). Typical delays for Figure 1 are given in Table 1. When the 74F382 is cascaded to handle word lengths longer than 4 bits, only the most significant overflow (OVR) output is used.

PIN CONFIGURATION

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 382	7.0 ns	54 mA

ORDERING INFORMATION

DESCRIPTION	COMMERCIAL RANGE $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$, $\mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	PKG DWG \#
20-pin plastic DIP	N74F382N	SOT146-1
20-pin plastic SO	N74F382D	SOT163-1

INPUT AND OUTPUT LOADING AND FAN OUT TABLE

PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A0 - A3	A operand inputs	$1.0 / 4.0$	$20 \mu \mathrm{~A} / 2.4 \mathrm{~mA}$
B0 - B3	B operand inputs	$1.0 / 4.0$	$20 \mu \mathrm{~A} / 2.4 \mathrm{~mA}$
S0 S2	Function select inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
Cn	Carry input	$1.0 / 5.0$	$20 \mu \mathrm{~A} / 3.0 \mathrm{~mA}$
Cn+4	Carry output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
OVR	Overflow output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
F0-F3	Outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

One (1.0) FAST unit load is defined as $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

IEC/IEEE SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS						OUTPUTS						OPERANDS	OPERATING MODE
S0	S1	S2	Cn	An	Bn	F0	F1	F2	F3	OVR	$\mathrm{Cn}+4$		
L	L	L	L	X	X	L	L	L	L	H	H		Clear
L	L	L	H	X	X	L	L	L	L	H	H		
H	L	L	L	L	L	H	H	H	H	L	L	Active-Low	B minus A
H	L	L	L	L	H	L	H	H	H	L	H		
H	L	L	L	H	L	L	L	L	L	L	L		
H	L	L	L	H	H	H	H	H	H	L	L		
H	L	L	H	L	L	L	L	L	L	L	H	Active-High	
H	L	L	H	L	H	H	H	H	H	L	H		
H	L	L	H	H	L	H	L	L	L	L	L		
H	L	L	H	H	H	L	L	L	L	L	H		
L	H	L	L	L	L	H	H	H	H	L	L	Active-Low	A minus B
L	H	L	L	L	H	L	L	L	L	L	L		
L	H	L	L	H	L	L	H	H	H	L	H		
L	H	L	L	H	H	H	H	H	H	L	L		
L	H	L	H	L	L	L	L	L	L	L	H	Active-High	
L	H	L	H	L	H	H	L	L	L	L	L		
L	H	L	H	H	L	H	H	H	H	L	H		
L	H	L	H	H	H	L	L	L	L	L	H		
H	H	L	L	L	L	L	L	L	L	L	L		A Plus B
H	H	L	L	L	H	H	H	H	H	L	L		
H	H	L	L	H	L	H	H	H	H	L	L		
H	H	L	L	H	H	L	H	H	H	L	H		
H	H	L	H	L	L	H	L	L	L	L	L		
H	H	L	H	L	H	L	L	L	L	L	H		
H	H	L	H	H	L	L	L	L	L	L	H		
H	H	L	H	H	H	H	H	H	H	L	H		
L	L	H	X	L	L	L	L	L	L	L	L		$A \oplus B$
L	L	H	X	L	H	H	H	H	H	L	L		
L	L	H	L	H	L	H	H	H	H	L	L		
L	L	H	X	H	H	L	L	L	L	H	H		
L	L	H	H	H	L	H	H	H	H	H	H		
H	L	H	X	L	L	L	L	L	L	L	L		$A+B$
H	L	H	X	L	H	H	H	H	H	L	L		
H	L	H	X	H	L	H	H	H	H	L	L		
H	L	H	L	H	H	H	H	H	H	L	L		
H	L	H	H	H	H	H	H	H	H	H	H		
L	H	H	X	L	L	L	L	L	L	H	H		AB
L	H	H	X	L	H	L	L	L	L	L	L		
L	H	H	X	H	L	L	L	L	L	H	H		
L	H	H	L	H	H	H	H	H	H	L	L		
L	H	H	H	H	H	H	H	H	H	H	H		
H	H	H	X	L	L	H	H	H	H	L	L		Preset
H	H	H	X	L	H	H	H	H	H	L	L		
H	H	H	X	H	L	H	H	H	H	L	L		
H	H	H	L	H	H	H	H	H	H	L	L		
H	H	H	H	H	H	H	H	H	H	H	H		

[^0]FUNCTION SELECT TABLE

SELECT			OPERATING MODE
S0	S1	S2	
L	L	L	B minus A
H	L	L	A minus B
L	H	L	A Plus B
H	H	L	A \oplus B
L	L	H	A + B
H	L	H	AB
L	H	H	Preset
H	H	H	

H = High voltage level
L = Low voltage level
Table 1. 16-Bit Delay Tabulation

PATH SEGMENT	TOWARD \mathbf{F}	OUTPUT $\mathbf{C n}+\mathbf{4}$, OVR
Ai or Bi to $\mathrm{Cn}+4$	6.5 ns	6.5 ns
Cn to $\mathrm{Cn}+4$	6.3 ns	6.3 ns
Cn to $\mathrm{Cn}+4$	6.3 ns	6.3 ns
Cn to F	8.1 ns	-
Cn to $\mathrm{Cn}+4$, OVR	-	8.0 ns
Total Delay	27.2 ns	27.1 ns

Table 2. Two's Complement Arithmetic

MSB			LSB	Numerical Values
L	L	L	L	0
L	L	L	H	1
L	L	H	L	2
L	L	H	H	3
L	H	L	L	4
L	H	L	H	5
L	H	H	L	6
L	H	H	H	7
H	L	L	L	-8
H	L	L	H	-7
H	L	H	L	-6
H	L	H	H	-5
H	H	L	L	-4
H	H	L	H	-3
H	H	H	L	-2
H	H	H	H	-1

$\mathrm{H}=$ High voltage level
$\mathrm{L}=$ Low voltage level

APPLICATION

Figure 1. 16-bit Look-ahead Carry ALU Expansion

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limit set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +1	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {amb }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARMETER SYMBOL	LIMITS			UNIT
		MIN	NOM	MAX	
$\mathrm{V}_{\text {CC }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
${ }^{\text {IOH }}$	High-level output current			-1	mA
${ }_{\text {IOL }}$	Low-level output current			20	mA
Tamb	Operating free-air temperature range	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			MIN	TYP ${ }^{2}$	MAX					
V_{OH}	High-level output voltage				$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX}$,	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.5			V
			$\mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX}$	$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7	3.4		V		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX},$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.30	0.50	V		
			$\mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=\mathrm{MAX}$	$\pm 5 \% \mathrm{~V}_{\text {CC }}$		0.30	0.50	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{I}}$			-0.73	-1.2	V		
I_{1}	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
I_{H}	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
IIL	Low-level input current	Cn	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-3.0	mA		
		A0-A3, B0-B3					-2.4	mA		
		S0, S1, S2					-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=$ MAX		-60		-150	mA		
I_{CC}	Supply current (total)		$\mathrm{V}_{C C}=\mathrm{MAX}$			54	81	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PH}} \\ & \hline \end{aligned}$	Propagation delay Cn to Fn	Waveform 1	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{array}{r} 7.0 \\ 4.5 \\ \hline \end{array}$	$\begin{gathered} 12.0 \\ 6.5 \\ \hline \end{gathered}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.5 \\ & 7.5 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHHL}} \\ & \hline \end{aligned}$	Propagation delay An or Bn to Fn	Waveform 1	$\begin{aligned} & 3.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.5 \\ & 10.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 17.0 \\ & 11.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay Si to Fi	Waveform 1	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 12.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PH}} \\ & \hline \end{aligned}$	Propagation delay Ai to Bi to $\mathrm{Cn}+4$	Waveform 1	$\begin{aligned} & 3.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 6.5 \end{aligned}$	$\begin{gathered} 10.5 \\ 9.5 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \hline 11.5 \\ & 10.5 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PH}} \\ & \hline \end{aligned}$	Propagation delay Si to OVR or $\mathrm{Cn}+4$	Waveform 1	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 10.5 \\ 8.0 \end{gathered}$	$\begin{aligned} & \hline 14.5 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.0 \\ & 12.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay Cn to Cn+4	Waveform 1	$\begin{aligned} & 3.0 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \\ & \hline \end{aligned}$	ns
$\begin{gathered} \text { tpLH } \\ \text { tpHL } \\ \hline \end{gathered}$	Propagation delay Cn to OVR	Waveform 1	$\begin{aligned} & 4.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{gathered} 13.5 \\ 6.5 \\ \hline \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{gathered} 15.0 \\ 7.0 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{pHHL}} \\ & \hline \end{aligned}$	Propagation delay Ai or Bi to OVR	Waveform 1	$\begin{aligned} & 6.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{gathered} 12.5 \\ 9.0 \\ \hline \end{gathered}$	$\begin{aligned} & 5.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 16.5 \\ & 10.0 \\ & \hline \end{aligned}$	ns

AC WAVEFORMS

For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.

Waveform 1. Propagation Delay for Non-Inverting or Inverting paths

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs

DEFINITIONS:

$R_{L}=$ Load resistor; see AC ELECTRICAL CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC ELECTRICAL CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\text {OUT }}$ of pulse generators.

Input Pulse Definition

family	INPUT PULSE REQUIREMENTS					
	amplitude	$\mathbf{V}_{\mathbf{M}}$	rep. rate	$\mathbf{t}_{\mathbf{w}}$	$\mathbf{t}_{\mathbf{T L H}}$	$\mathbf{t}_{\mathbf{T H L}}$
74 F	3.0 V	1.5 V	1 MHz	500 ns	2.5 ns	2.5 ns

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\underset{\text { max. }}{A}$	A min.	A_{2} max.	b	b_{1}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	e_{1}	L	M_{E}	\mathbf{M}_{H}	w	$\mathbf{z a x}^{(1)}$
mm	4.2	0.51	3.2	$\begin{aligned} & 1.73 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 26.92 \\ & 26.54 \end{aligned}$	$\begin{aligned} & 6.40 \\ & 6.22 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.60 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 8.25 \\ & 7.80 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.3 \end{gathered}$	0.254	2.0
inches	0.17	0.020	0.13	$\begin{aligned} & 0.068 \\ & 0.051 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 1.060 \\ & 1.045 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.24 \end{aligned}$	0.10	0.30	$\begin{aligned} & 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.33 \end{aligned}$	0.01	0.078

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT146-1			SC603	- ¢	$\begin{aligned} & 92-11-17 \\ & 95-05-24 \end{aligned}$

detail X

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(1)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(1)}$	θ
mm	2.65	0.30	2.45	0.10	2.25	0.25	0.49	0.36	0.32	13.0	7.6	12.6	7.4	1.27	10.65	10.00	1.4	1.1 0.4
	0.10	0.012	0.096	0.01	0.019	0.013	0.51	0.30	0.050	0.419	0.25	0.25	0.1	0.9				

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT163-1	075E04	MS-013AC		\square (¢)	$\begin{aligned} & -95-01-24 \\ & 97-05-22 \end{aligned}$

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors

811 East Arques Avenue
P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381

[^0]: H = High voltage level
 L = Low voltage level
 X = Don't care

